S-adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase from Rhodobacter capsulatus: mechanistic insights and stimulation with phospholipids.

نویسندگان

  • Artur Sawicki
  • Robert D Willows
چکیده

The enzyme BchM (S-adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase) from Rhodobacter capsulatus catalyses an intermediate reaction in the bacteriochlorophyll biosynthetic pathway. Overexpression of His(6)-tagged protein in Escherichia coli resulted in the majority of polypeptide existing as inclusion bodies. Purification from inclusion bodies was performed using metal-affinity chromatography after an elaborate wash step involving surfactant polysorbate-20. Initial enzymatic assays involved an in situ generation of S-adenosyl-L-methionine substrate using a crude preparation of S-adenosyl-L-methionine synthetase and this resulted in higher enzymatic activity compared with commercial S-adenosyl-L-methionine. A heat-stable stimulatory component present in the S-adenosyl-L-methionine synthetase was found to be a phospholipid, which increased enzymatic activity 3-4-fold. Purified phospholipids also stabilized enzymatic activity and caused a disaggregation of the protein to lower molecular mass forms, which ranged from monomeric to multimeric species as determined by size-exclusion chromatography. There was no stimulatory effect observed with magnesium-chelatase subunits on methyltransferase activity using His-BchM that had been stabilized with phospholipids. Substrate specificity of the enzyme was limited to 5-co-ordinate square-pyramidal metalloporphyrins, with magnesium-protoporphyrin IX being the superior substrate followed by zinc-protoporphyrin IX and magnesium-deuteroporphyrin. Kinetic analysis indicated a random sequential reaction mechanism. Three non-substrate metalloporphyrins acted as inhibitors with different modes of inhibition exhibited with manganese III-protoporphyrin IX (non-competitive or uncompetitive) compared with cobalt II-protoporphyrin IX (competitive).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleotide Sequence of S-Adenosyl-l-Methionine: Magnesium Protoporphyrin Methyltransferase from Rhodobacter capsulatus.

It is generally believed that Chl and bacteriochlorophyll biosynthesis are evolutionarily related. This supposition is supported by the observation that the biosynthetic pathway for Chl a involves intermediates that are common with bacteriochlorophyll a biosynthesis (reviewed in ref. 7) and by the observation that light-independent reduction of protochlorophyllide to Chlide involves an enzyme c...

متن کامل

Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus.

The facultative photosynthetic bacterium Rhodobacter capsulatus can adapt from an anaerobic photosynthetic mode of growth to aerobic heterotrophic metabolism. As this adaptation occurs, the cells must rapidly halt bacteriochlorophyll synthesis to prevent phototoxic tetrapyrroles from accumulating, while still allowing heme synthesis to continue. A likely control point is Mg chelatase, the enzym...

متن کامل

(Minus) S-adenosyl-L-methionine-magnesium protoporphyrin methyltransferase, an enzyme in the biosynthetic pathway of chlorophyll in Zea mays.

The enzyme (-) S-adenosyl-L-methionine-magnesium protoporphyrin methyltransferase, which catalyzes the transfer of the methyl group from (-) S-adenosyl-L-methionine to magnesium protoporphyrin to form magnesium protoporphyrin monomethyl ester, has been detected in chloroplasts isolated from Zea mays. Zinc protoporphyrin and free protoporphyrin also act as substrates in the system, although neit...

متن کامل

Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor.

The isocyclic ring of bacteriochlorophyll (BChl) is formed by the conversion of Mg-protoporphyrin monomethyl ester (MPE) to protochlorophyllide (PChlide). Similarities revealed by blast searches with the putative anaerobic MPE-cyclase BchE suggested to us that this protein also uses a cobalamin cofactor. We found that vitamin B(12) (B(12))-requiring mutants of the bluE and bluB genes of Rhodoba...

متن کامل

Nucleotide sequence of the Rhodobacter capsulatus hemE gene.

The last step in heme synthesis is the insertion of iron into the ring of protoporphyrin IX. The enzyme which catalyzes this reaction, ferrochelatase (FC), is encoded by the hemH gene. A clone containing this gene from Rhodobacter capsulatus, a purple non-sulfur photosynthetic bacterium, has been sequenced. A single open reading frame was found which could encode a protein of 351 amino acids. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 406 3  شماره 

صفحات  -

تاریخ انتشار 2007